Nanotechnology-based Approaches for Efficient Wound Monitoring and Healing

Wound Monitoring and Healing


  • Arqam Tahir Department of Biology, Lahore Garrison University, Lahore, Pakistan
  • Laraib Zainab Department of Biology, Lahore Garrison University, Lahore, Pakistan
  • Aleesha Naheed Department of Biology, Lahore Garrison University, Lahore, Pakistan
  • Hafsa Ahmad Qureshi Department of Biology, Lahore Garrison University, Lahore, Pakistan
  • Hafiza Sonia Bibi Department of Biology, Lahore Garrison University, Lahore, Pakistan
  • Aisha Khalid Department of Biology, Lahore Garrison University, Lahore, Pakistan
  • Nimra Tehreem Department of Biology, Lahore Garrison University, Lahore, Pakistan



Nanotechnology, Nanoparticles, Therapeutic Agents


Wound healing is a complex physiological process consisting of several biological and immunological mechanisms which are mutually inclusive. Wounds are commonly categorized as acute and chronic wounds. Acute wound healing is dynamic and chronic wound healing proceeds in a prolonged and irregular manner; thus, it calls for proper management. Certain problems associated to wound healing have triggered the researchers to come up with a promising approach and so nanotechnology-based approaches have evolved as a driving force in wound healing. Nanotechnology has led to the fabrication of nanoparticles, biomolecule loaded dressings and smart dressings to accelerate the wound healing. Nanobiosensors are also being developed which can monitor wound conditions with great precision and incredible sensitivity. This review concentrates on novel nanoscale approaches for instance, nanoparticles such as gold, silver, polystyrene, chitosan, zinc peroxide and nanomaterials such as nano-sensors, nanoflares, nanofibers, etc. for effective wound monitoring and healing. The efficacy of nanomaterial based therapeutic agents in wound healing has been expressed herein. The significance of nanoscale systems in wound healing in terms of anti-microbial activity, angiogenesis, drug delivery, collagen deposition and stem cell delivery has also been addressed.  


Sullivan JV and Myers S. Skin Structure and Function, Wound Healing and Scarring. In: Plastic Surgery-Principles and Practice. Elsevier; 2022: 1–14. doi: 10.1016/B978-0-323-65381-7.00001-0. DOI:

Weaver ML, Hicks CW, Canner JK, Sherman RL, Hines KF, Mathioudakis N, et al. The Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIfI) classification system predicts wound healing better than direct angiosome perfusion in diabetic foot wounds. Journal of Vascular Surgery. 2018 Nov; 68(5): 1473–81. doi: 10.1016/j.jvs.2018.01.060. DOI:

Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics. 2020 Aug; 12(8): 735. doi: 10.3390/pharmaceutics12080735. DOI:

Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of Acute and Chronic Wound Healing. Biomolecules. 2021 May; 11(5): 700. doi: 10.3390/biom11050700. DOI:

Larouche J, Sheoran S, Maruyama K, Martino MM. Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Advances in Wound Care (New Rochelle). 2018 Jul; 7(7): 209–31. doi: 10.1089/wound.2017.0761. DOI:

Wu YK, Cheng NC, Cheng CM. Biofilms in Chronic Wounds: Pathogenesis and Diagnosis. Trends Biotechnology . 2019 May; 37(5): 505–17. doi: 10.1016/j.tibtech.2018.10.011. DOI:

Domingo S, Solé C, Moliné T, Ferrer B, Cortés-Hernández J. MicroRNAs in Several Cutaneous Autoimmune Diseases: Psoriasis, Cutaneous Lupus Erythematosus and Atopic Dermatitis. Cells. 2020 Dec; 9(12): 2656. doi: 10.3390/cells9122656. DOI:

Gardikiotis I, Cojocaru FD, Mihai CT, Balan V, Dodi G. Borrowing the Features of Biopolymers for Emerging Wound Healing Dressings: A Review. International Journal of Molecular Sciences. 2022 Aug; 23(15): 8778. doi: 10.3390/ijms23158778. DOI:

Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z. An Introduction to Nanotechnology. Elsevier. 2019. 1–27. doi: 10.1016/B978-0-12-813586-0.00001-8. DOI:

Thangadurai TD, Manjubaashini N, Thomas S, Maria HJ. Nanostructured Materials. Cham: Springer International Publishing; 2020. doi: 10.1007/978-3-030-26145-0. DOI:

Pan BH, Zhang Q, Lam CH, Yuen HY, Kuang S, Zhao X. Petite miracles: insight into the nano-management of scarless wound healing. Drug Discovery Today. 2022 Mar; 27(3): 857–65. doi: 10.1016/j.drudis.2021.01.025. DOI:

Javaid M, Haleem A, Singh RP, Suman R. 3D printing applications for healthcare research and development. Global Health Journal. 2022 Dec; 6(4): 217–26. doi: 10.1016/j.glohj.2022.11.001. DOI:

Cacciatore MA, Scheufele DA, Corley EA. From enabling technology to applications: The evolution of risk perceptions about nanotechnology. Public Understanding of Science. 2011 May; 20(3): 385–404. doi: 10.1177/0963662509347815. DOI:

Lin H and Datar RH. Medical applications of nanotechnology. The National Medical Journal of India. 2006; 19(1): 27–32.

He S, Jiang L, Liu J, Zhang J, Shao W. Electrospun PVA/gelatin based nanofiber membranes with synergistic antibacterial performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022 Mar; 637: 128196. doi: 10.1016/j.colsurfa.2021.128196. DOI:

Matteucci F, Giannantonio R, Calabi F, Agostiano A, Gigli G, Rossi M. Deployment and exploitation of nanotechnology nanomaterials and nanomedicine. InAIP conference proceedings. AIP Publishing. 2018.doi: 10.1063/1.5047755. DOI:

Pati R, Shevtsov M, Sonawane A. Nanoparticle Vaccines Against Infectious Diseases. Frontiers Immunololgy. 2018 Oct; 9. doi: 10.3389/fimmu.2018.02224. DOI:

Yeo DC, Wiraja C, Paller AS, Mirkin CA, Xu C. Abnormal scar identification with spherical-nucleic-acid technology. Nature Biomedical Engineering. 2018 Apr; 2(4): 227–38. doi: 10.1038/s41551-018-0218-x. DOI:

Randeria PS, Seeger MA, Wang XQ, Wilson H, Shipp D, Mirkin CA, et al. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proceedings of the National Academy of Sciences. 2015 May; 112(18): 5573–8. doi: 10.1073/pnas.1505951112. DOI:

Safaee MM, Gravely M, Roxbury D. A wearable optical microfibrous biomaterial with encapsulated nanosensors enables wireless monitoring of oxidative stress. Advanced Functional Materials. 2021 Mar; 31(13): 2006254. doi: 10.1002/adfm.202006254. DOI:

Gao X, Chung LWK, Nie S. Quantum Dots for In Vivo Molecular and Cellular Imaging. In: Quantum Dots. New Jersey: Humana Press; 135–46. doi: 10.1385/1-59745-369-2:135. DOI:

Morrison DWG, Dokmeci MR, Demirci U, Khademhosseini A. Clinical Applications of Micro‐ and Nanoscale Biosensors. In: Biomedical Nanostructures. Wiley; 2007. 439–60. doi: 10.1002/9780470185834.ch17. DOI:

Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T. Intracellular pH sensors based on surface-enhanced Raman scattering. Analytical chemistry. 2004 Dec; 76(23): 7064-8.doi: 10.1021/ac049093j. DOI:

Gu Z, Aimetti AA, Wang Q, Dang TT, Zhang Y, Veiseh O, et al. Injectable Nano-Network for Glucose-Mediated Insulin Delivery. ACS Nano. 2013 May; 7(5): 4194–201. doi: 10.1021/nn400630x. DOI:

Tang N, Zheng Y, Jiang X, Zhou C, Jin H, Jin K, et al. Wearable Sensors and Systems for Wound Healing-Related pH and Temperature Detection. Micromachines (Basel). 2021 Apr; 12(4): 430. doi: 10.3390/mi12040430. DOI:

Presley K, Hwang J, Cheong S, Tilley R, Collins J, Viapiano M, et al. Nanoscale upconversion for oxygen sensing. Materials Science and Engineering: C. 2017 Jan; 70: 76–84. doi: 10.1016/j.msec.2016.08.056. DOI:

Kassal P, Kim J, Kumar R, de Araujo WR, Steinberg IM, Steinberg MD, et al. Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status. Electrochem commun. 2015 Jul; 56: 6–10. doi: 10.1016/j.elecom.2015.03.018. DOI:

Cheng S, Wang H, Pan X, Zhang C, Zhang K, Chen Z, et al. Dendritic Hydrogels with Robust Inherent Antibacterial Properties for Promoting Bacteria-Infected Wound Healing. ACS Appl Mater Interfaces. 2022 Mar; 14(9): 11144–55. doi: 10.1021/acsami.1c25014. DOI:

Seifalian AM. Nanoparticles in wound healing from hope to promise from promise to routine. Frontiers in Bioscience. 2018; 23(3): 4632. doi: 10.2741/4632. DOI:

Paladini F and Pollini M. Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials. 2019 Aug; 12(16): 2540. doi: 10.3390/ma12162540. DOI:

Lau P, Bidin N, Islam S, Shukri WNBWM, Zakaria N, Musa N et al. Influence of gold nanoparticles on wound healing treatment in rat model: Photobiomodulation therapy. Lasers Surgery and Medicine 2017 Apr; 49(4): 380–6. doi: 10.1002/lsm.22614. DOI:

Mostafa M, Kandile NG, Mahmoud MK, Ibrahim HM. Synthesis and characterization of polystyrene with embedded silver nanoparticle nanofibers to utilize as antibacterial and wound healing biomaterial. Heliyon. 2022 Jan; 8(1): e08772. doi: 10.1016/j.heliyon.2022.e08772. DOI:

Biranje SS, Madiwale P V, Patankar KC, Chhabra R, Dandekar-Jain P, Adivarekar RV. Hemostasis and anti-necrotic activity of wound-healing dressing containing chitosan nanoparticles. International Journal of Biological Macromolecules. 2019 Jan; 121: 936–46. doi: 10.1016/j.ijbiomac.2018.10.125. DOI:

Ali S, Morsy R, El-Zawawy N, Fareed M, Bedaiwy M. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. International Journal of Nanomedicine. 2017 Aug; 12: 6059–73. doi: 10.2147/IJN.S141201. DOI:

Wang Z, Ou X, Guan L, Li X, Liu A, Li L, et al. Pomegranate-inspired multifunctional nanocomposite wound dressing for intelligent self-monitoring and promoting diabetic wound healing. Biosens Bioelectron. 2023 Sep; 235: 115386. doi: 10.1016/j.bios.2023.115386. DOI:

Ghosh U, Sayef Ahammed K, Mishra S, Bhaumik A. The emerging roles of silver nanoparticles to target viral life cycle and detect viral pathogens. Chemistry–An Asian Journal. 2022 Mar; 17(5): e202101149. doi: 10.1002/asia.202101149. DOI:

Thananimit S, Sorsiw P, Wanna W, Phongpaichit S. Antifungal Activity of Silver Nanoparticles with the Potential to Control Fungal Contamination in the Male Inflorescences of Palmyra Palm. Applied Science and Engineering Progress. 2022 Sep 9; 15(4): 4532-. doi: 10.14416/j.asep.2021.07.007. DOI:

Zare-Bidaki M, Ghasempour A, Mohammadparast-Tabas P, Ghoreishi SM, Alamzadeh E, Javanshir R, et al. Enhanced in vivo wound healing efficacy and excellent antibacterial, antifungal, antioxidant and anticancer activities via AgNPs@ PCS. Arabian Journal of Chemistry. 2023 Oct; 16(10): 105194. doi: 10.1016/j.arabjc.2023.105194. DOI:

Jeevanantham V, Tamilselvi D, Bavaji SR, Mohan S. Green formulation of gold nanoparticles and their antioxidative assays, antimicrobial activity and photocatalytic colour decay. Bulletin of Materials Science. 2023 Feb; 46(1): 32. doi: 10.1007/s12034-022-02868-1. DOI:

Zhao H, Su H, Ahmeda A, Sun Y, Li Z, Zangeneh MM, et al. Biosynthesis of copper nanoparticles using Allium eriophyllum Boiss leaf aqueous extract; characterization and analysis of their antimicrobial and cutaneous wound‐healing potentials. Applied Organometallic Chemistry. 2022 Dec; 36(12): e5587. doi: 10.1002/aoc.5587. DOI:

Aleem AR, Shahzadi L, Nasir M, Hajivand P, Alvi F, Akhtar A, et al. Developing sulfur‐doped titanium oxide nanoparticles loaded chitosan/cellulose‐based proangiogenic dressings for chronic ulcer and burn wounds healing. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2022 May; 110(5): 1069-81. doi: 10.1002/jbm.b.34981. DOI:

Azam A, Muhammad G, Aslam MS, Iqbal MM, Raza MA, Akhtar N, et al. Enhanced bactericidal and in vivo wound healing potential of biosynthesized zinc oxide nanoparticles from psyllium mucilage. Applied Organometallic Chemistry. 2023 Jan; 37(1): e6923. doi: 10.1002/aoc.6923. DOI:

Napagoda M, Madhushanthi P, Witharana S. Nanomaterials for Wound Healing and Tissue Regeneration. In: Nanotechnology in Modern Medicine. Singapore: Springer Nature Singapore; 2023. 109–34. doi: 10.1007/978-981-19-8050-3_5. DOI:

Rahman MA, Abul Barkat H, Harwansh RK, Deshmukh R. Carbon-based Nanomaterials: Carbon Nanotubes, Graphene, and Fullerenes for the Control of Burn Infections and Wound Healing. Current Pharmaceutical Biotechnology. 2022 Oct; 23(12): 1483–96. doi: 10.2174/1389201023666220309152340. DOI:

Zhou Y, Chen R, He T, Xu K, Du D, Zhao N et al. Biomedical Potential of Ultrafine Ag/AgCl Nanoparticles Coated on Graphene with Special Reference to Antimicrobial Performances and Burn Wound Healing. ACS Applied Materials and Interfaces. 2016 Jun; 8(24): 15067–75. doi: 10.1021/acsami.6b03021. DOI:

Liu T, Dan W, Dan N, Liu X, Liu X, Peng X. A novel grapheme oxide-modified collagen-chitosan bio-film for controlled growth factor release in wound healing applications. Materials Science and Engineering: C. 2017 Aug; 77: 202–11. doi: 10.1016/j.msec.2017.03.256. DOI:

Wang CH, Guo ZS, Pang F, Zhang LY, Yan M, Yan JH et al. Effects of Graphene Modification on the Bioactivation of Polyethylene-Terephthalate-Based Artificial Ligaments. ACS Applied Materials and Interfaces. 2015 Jul; 7(28): 15263–76. doi: 10.1021/acsami.5b02893. DOI:

Nishida E, Miyaji H, Kato A, Takita H, Iwanaga T, Momose T et al. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket. International Journal of Nanomedicine. 2016; 11: 2265–77. doi: 10.2147/IJN.S104778. DOI:

Kim JH, Kim MH, Jo DH, Yu YS, Lee TG, Kim JH. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials. 2011 Mar; 32(7): 1865–71. doi: 10.1016/j.biomaterials.2010.11.030. DOI:

Mukherjee S, Nethi SK, Patra CR. Green Synthesized Gold Nanoparticles for Future Biomedical Applications. Particulate Technology for Delivery of Therapeutics. Singapore: Springer; 2017. 359–93. doi: 10.1007/978-981-10-3647-7_11. DOI:

Chen SA, Chen HM, Yao YD, Hung CF, Tu CS, Liang YJ. Topical treatment with anti-oxidants and Au nanoparticles promote healing of diabetic wound through receptor for advance glycation end-products. European Journal of Pharmaceutical Sciences. 2012 Dec; 47(5): 875–83. doi: 10.1016/j.ejps.2012.08.018. DOI:

Secco M, Bueno C, Vieira NM, Almeida C, Pelatti M, Zucconi E, et al. Systemic Delivery of Human Mesenchymal Stromal Cells Combined with IGF-1 Enhances Muscle Functional Recovery in LAMA2dy/2j Dystrophic Mice. Stem Cell Reviews and Reports. 2013 Feb; 9(1): 93–109. doi: 10.1007/s12015-012-9380-9. DOI:

Lai HJ, Kuan CH, Wu HC, Tsai JC, Chen TM, Hsieh DJ, et al. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomaterialia. 2014 Oct; 10(10): 4156–66. doi: 10.1016/j.actbio.2014.05.001. DOI:

Gainza G, Pastor M, Aguirre JJ, Villullas S, Pedraz JL, Hernandez RM, et al. A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: In vitro bioactivity and in vivo effectiveness in healing-impaired db/db mice. Journal of Controlled Release. 2014 Jul; 185: 51–61. doi: 10.1016/j.jconrel.2014.04.032. DOI:

Losi P, Briganti E, Errico C, Lisella A, Sanguinetti E, Chiellini F, et al. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomaterialia. 2013 Aug; 9(8): 7814–21. doi: 10.1016/j.actbio.2013.04.019. DOI:

Hajimiri M, Shahverdi S, Esfandiari MA, Larijani B, Atyabi F, Rajabiani A, et al. Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing. Drug Development and Industrial Pharmacy. 2016 May; 42(5): 707–19. doi: 10.3109/03639045.2015.1075030. DOI:

Chen J, Zhang G, Zhao Y, Zhou M, Zhong A, Sun J. Promotion of skin regeneration through co-axial electrospun fibers loaded with basic fibroblast growth factor. Advanced Composites and Hybrid Materials. 2022 Jun; 5(2): 1111-25. doi: 10.1007/s42114-022-00439-w. DOI:

Li S, Tang Q, Xu H, Huang Q, Wen Z, Liu Y, et al. Improved stability of KGF by conjugation with gold nanoparticles for diabetic wound therapy. Nanomedicine. 2019 Nov; 14(22): 2909–23. doi: 10.2217/nnm-2018-0487. DOI:

Dai X, Guo Q, Zhao Y, Zhang P, Zhang T, Zhang X, et al. Functional Silver Nanoparticle as a Benign Antimicrobial Agent That Eradicates Antibiotic-Resistant Bacteria and Promotes Wound Healing. ACS Applied Materials and Interfaces. 2016 Oct; 8(39): 25798–807. doi: 10.1021/acsami.6b09267. DOI:

Guthrie KM, Agarwal A, Teixeira LBC, Dubielzig RR, Abbott NL, Murphy CJ, et al. Integration of Silver Nanoparticle-impregnated Polyelectrolyte Multilayers into Murine-Splinted Cutaneous Wound Beds. Journal of Burn Care & Research. 2013; 34(6): e359–67. doi: 10.1097/BCR.0b013e31827e7ef9. DOI:

Kawai K, Larson BJ, Ishise H, Carre AL, Nishimoto S, Longaker M, et al. Calcium-Based Nanoparticles Accelerate Skin Wound Healing. PLoS One. 2011 Nov; 6(11): e27106. doi: 10.1371/journal.pone.0027106. DOI:

Danila D, Johnson E, Kee P. CT imaging of myocardial scars with collagen-targeting gold nanoparticles. Nanomedicine. 2013 Oct; 9(7): 1067–76. doi: 10.1016/j.nano.2013.03.009. DOI:

Kharlamov AN, Tyurnina AE, Veselova VS, Kovtun OP, Shur VY, Gabinsky JL. Silica–gold nanoparticles for atheroprotective management of plaques: results of the NANOM-FIM trial. Nanoscale. 2015; 7(17): 8003–15. doi: 10.1039/C5NR01050K. DOI:

Park HJ, Lee J, Kim MJ, Kang TJ, Jeong Y, Um SH, et al. Sonic hedgehog intradermal gene therapy using a biodegradable poly (β-amino esters) nanoparticle to enhance wound healing. Biomaterials. 2012 Dec; 33(35): 9148–56. doi: 10.1016/j.biomaterials.2012.09.005. DOI:

Chen L, Zhou X, He C. Mesoporous silica nanoparticles for tissue‐engineering applications. WIREs Nanomedicine and Nanobiotechnology. 2019 Nov; 11(6). doi: 10.1002/wnan.1573. DOI:

Hangge P, Stone J, Albadawi H, Zhang YS, Khademhosseini A, Oklu R. Hemostasis and nanotechnology. Cardiovascular Diagnosis Therapy. 2017 Dec; 7(S3): S267–75. doi: 10.21037/cdt.2017.08.07. DOI:

Lee MA, Jin X, Muthupalani S, Bakh NA, Gong X, Strano MS. In-Vivo fluorescent nanosensor implants based on hydrogel-encapsulation: investigating the inflammation and the foreign-body response. Journal of Nanobiotechnology. 2023 Apr; 21(1): 133. doi: 10.1186/s12951-023-01873-8. DOI:

Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, et al. Nanotechnology-Driven Therapeutic Interventions in Wound Healing: Potential Uses and Applications. ACS Central Science. 2017 Mar; 3(3): 163–75. doi: 10.1021/acscentsci.6b00371. DOI:

Blanco-Fernandez B, Castaño O, Mateos-Timoneda MÁ, Engel E, Pérez-Amodio S. Nanotechnology Approaches in Chronic Wound Healing. Advances in Wound Care (New Rochelle). 2021 May; 10(5): 234–56. doi: 10.1089/wound.2019.1094. DOI:

Bhattacharya D, Ghosh B, Mukhopadhyay M. Development of nanotechnology for advancement and application in wound healing: a review. IET Nanobiotechnology. 2019 Oct; 13(8): 778–85. doi: 10.1049/iet-nbt.2018.5312. DOI:

De Luca I, Pedram P, Moeini A, Cerruti P, Peluso G, Di Salle A, et al. Nanotechnology Development for Formulating Essential Oils in Wound Dressing Materials to Promote the Wound-Healing Process: A Review. Applied Sciences. 2021 Feb; 11(4): 1713. doi: 10.3390/app11041713. DOI:

Nqakala ZB, Sibuyi NRS, Fadaka AO, Meyer M, Onani MO, Madiehe AM. Advances in Nanotechnology towards Development of Silver Nanoparticle-Based Wound-Healing Agents. International Journal of Molecular Sciences. 2021 Oct; 22(20): 11272. doi: 10.3390/ijms222011272. DOI:



DOI: 10.54393/pbmj.v6i12.974
Published: 2023-12-31

How to Cite

Tahir, A., Zainab, L., Naheed, A., Ahmad Qureshi, H., Bibi, H. S., Khalid, A., & Tehreem, N. (2023). Nanotechnology-based Approaches for Efficient Wound Monitoring and Healing : Wound Monitoring and Healing . Pakistan BioMedical Journal, 6(12), 10–18.



Review Article