Virus induced hepatocellular carcinoma (HCC) and protein biomarkers

Virus induced hepatocellular carcinoma (HCC) and protein biomarkers

Authors

  • Hamza Abbas Jaffari Department of Biology, Faculty of Basic Sciences, Lahore Garrison University, Lahore, Pakistan
  • Sumaira Mazhar Department of Biology, Faculty of Basic Sciences, Lahore Garrison University, Lahore, Pakistan

DOI:

https://doi.org/10.52229/pbmj.v4i2.72

Abstract

Hepatocellular carcinoma (HCC) is a standout amongst the most widely recognized cancers around the world, and just as the alcoholic liver disease it is also progressed by extreme viral hepatitis B or C. At the early stage of the disease, numerous patients are asymptomatic consequently late diagnosis of HCC occurs resulting in expensive surgical resection or transplantation. On the basis of the alpha fetoprotein (AFP) estimation, combined with the ultrasound and other sensitive imaging techniques used, the non-invasive detection systems are available. For early disease diagnosis and its use in the effective treatment of HCC patients, the identification of HCC biomarkers has provided a breakthrough utilizing the molecular genetics and proteomics. In the current article, most recent reports on the protein biomarkers of HBV or HCV-related HCC and their co-evolutionary association with liver cancer are reviewed.

References

D.M. Parkin, F. Bray, J. Ferlay and P. Pisani, P, “Global cancer statistics, 2002” CA: A Cancer Journal of Clinicians, vol. 55, no. 2, pp. 74–108, 2005.

H.B. El-Serag, Hepatocellular carcinoma. New England Journal Medicine, vol. 365, no. 12, pp. 1118–1127, 2011.

F. Zoulim and S. Locarnini, “Management of treatment failure in chronic hepatitis B” Journal of Hepatolology, vol. 56, pp. 112–122, 2012.

V.F.N. Kumar and A. Abbas, Pathologic Basis of Disease, 7th ed. Philadelphia, Pa.: Elsevier Saunders, 2003.

G.J. Mizejewski, “Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants” Experimental Biology and Medicine (Maywood), vol. 226, no. 5, pp. 377–408, 2001.

S. Mathew, A. Ali, H. Abdel-Hafiz, K. Fatima, M. Suhail, G. Archunan and M. Al Qahtani, “Biomarkers for virus-induced hepatocellular carcinoma (HCC), Infection, Genetics and Evolution” vol. 26, pp. 327-339, 2014.

G. O’Neill, E. Tsega, P. Gold and R.A. Murgita, “Regulation of human lymphocyte activation by alpha-fetoprotein. Evidence for selective suppression of Ia-associated T-cell proliferation in vitro” Oncodevelopment Biology and Medicine, vol. 3, no. 2–3, pp. 135–150, 1982.

G. Fattovich, T. Stroffolini, I. Zagni and F. Donato, “Hepatocellular carcinoma in cirrhosis: incidence and risk factors” Gastroenterology, vol. 127, pp. 35–50, 2004.

F. Lin, H. Abdallah and S. Meschter, “Diagnostic utility of CD10 in differentiating hepatocellular carcinoma from metastatic carcinoma in fine-needle aspiration biopsy (FNAB) of the liver” Diagnostic Cytopatholology, vol. 30, no. 2, pp. 92–97, 20004.

H.A. Liebman, B. Furie, M.J. Tong, R.A. Blanchard, K.J. Lo, S.D. Lee, M.S. Coleman and B. Furie, “Des-gamma-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma” New England Journal of Medicine, vol. 310, pp. 1427–1431, 1984.

J. Ikoma, M. Kaito, T. Ishihara, N. Nakagawa, A. Kamei and N. Fujita, “Early diagnosis of hepatocellular carcinoma using a sensitive assay for serum des-gamma-carboxy prothrombin: a prospective study” Hepatogastroenterology, vol. 49, no. 43, pp. 235–238, 2002.

M. Suzuki, H. Shiraha, T. Fujikawa, N. Takaoka, N. Ueda and Y. Nakanishi, “ Des-gamma-carboxy prothrombin is a potential autologous growth factor for hepatocellular carcinoma” Journal of Biological Chemistry, vol. 280, no. 8, pp. 6409–6415, 2005.

K. Zhu, Z. Dai and J. Zhou, “Biomarkers for hepatocellular carcinoma: progression in early diagnosis, prognosis, and personalized therapy” Biomarkers Research, vol. 1, no. 1, pp. 10, 2013.

R.D. Kladney, X. Cui, G.A. Bulla, E.M. Brunt and C.J. Fimmel, “Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease” Hepatology, vol. 35, no. 6, pp. 1431–1440, 2002.

G. McIntosh, K.H. Taylor, J. Liu, J. Guo, J.W. Davis, H. Shi and C.W. Caldwell, “Promoter DNA methylation ofCD10 in lymphoid malignancies” The American Journal of Pathology, vol. 154, no. 1, pp. 77–82, 1999.

A. Galy, M. Travis, D. Cen and B. Chen, “Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset” Immunity, vol. 3, no. 4, pp. 459–473, 1995.

C.N. Papandreou and D. Nanus, “Is methylation the key to CD10 loss?” Journal of Pediatric and. Hematology/ Oncolology, vol. 32, no. 1, pp. 2–3, 2010.

N. Bilalovic, B. Sandstad, R. Golouh, J.M. Nesland, I. Selak and E.E. Torlakovic, “CD10 protein expression in tumor and stromal cells of malignant melanoma is associated with tumor progression” Modern Patholology, vol. 17, no. 10, pp. 1251–1258, 2004.

H.L. Jia, Q.H. Ye, L.X. Qin, A. Budhu, M. Forgues, Y. Chen, Y.K. Liu, H.C. Sun, L. Wang and H.Z. Lu, “Gene expression profiling reveals potential biomarkers of human hepatocellular carcinoma” Clinical Cancer Research, vol. 13, no. 4, pp.1133–1139, 2007.

S. Shousha, F. Gadir,D. Peston, D. Bansi, A.V. Thillainaygam and I.M. Murray-Lyon, “CD10 immunostaining of bile canaliculi in liver biopsies: change of staining pattern with the development of cirrhosis” Histopathology, vol. 45, no. 4, pp. 335–342, 2004.

A. Ahuja, N. Gupta, N. Kalra, R. Srinivasan, Y. Chawla and A. Rajwanshi, “Role of 10 immunochemistry in differentiating hepatocellular carcinoma from metastatic carcinoma of the liver. Cytopathology” vol. 19, no. 4, pp. 229–235, 2008.

N. Borscheri, A. Roesslr and C. Röcken, “Canalicular immunostaining of neprilysin (CD10) as a diagnosticmarker for hepatocellular carcinomas” The American Journal of Surgical Pathology, vol. 10, pp. 1297–1303, 2001.

P. Chu and D. Arber, “Paraffin-section detection of CD10 in 505 nonhematopoietic neoplasms. Frequent expression in renal cell carcinoma and endometrial stromal sarcoma” The American Journal of Clinical Pathology, vol. 113, no. 3, pp. 374–382, 2000.

N.A. Abumrad, M.R. el-Maghrabi, E.Z. Amri, E. Lopez and P.A. Grimaldi, “Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36” Journal of Biological Chemistry, vol. 268, pp. 17665–17668, 1993.

K.P. Janssen, R. Rost, L. Eichinger and M. Schleicher, “Characterization of CD36/ LIMPII homologues in Dictyostelium discoideum” Journal of Biological Chemistry, vol. 276, no. 42, pp. 38899–38910, 2001.

R.L. Silverstein and M. Febbraio, “CD36 and atherosclerosis. Current Opinion in Lipidology” vol. 11, no. 5, pp. 483–491, 2000.

R.L. Silverstein and M. Febbraio, “CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior” Science Signal, vol. 2, no. 72, pp. re3, 2009.

A.M. McDonnell, B. Robinson and A.J. Currie, “Tumor antigen cross-presentation and the dendritic cell: where it all begins? Clinical and Developmental Immunology, vol. 2010, 2010.

Maeno, Y., Fujioka, H., Hollingdale, M.R., Ockenhouse, C.F., Nakazawa, S., Aikawa, M., 1994. Ultrastructural localization of CD36 in human hepatic sinusoidal lining cells, hepatocytes, human hepatoma (HepG2-A16) cells, and C32 amelanotic melanoma cells. Exp. Parasitol. 79 (3), 383–390.

Pez, F., Lopez, A., Kim, M., Wands, J.R., Caron de Fromentel, C., Merle, P., 2013. Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J. Hepatol. 59 (5), 1107–1117.

Miquilena-Colina, M.E., Lima-Cabello, E., Sánchez-Campos, S., García-Mediavilla, M.V., Fernández-Bermejo, M., Lozano-Rodríguez, T., Vargas-Castrillón, J., Buqué, X., Ochoa, B., Aspichueta, P., González-Gallego, J., García-Monzón, C., 2010. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut 60 (10), 1394–1402. miRBase: Homo sapiens miRNAs in the miRBase. In. Manchester University: Faculty of Life Sciences; 1824.

Himoto, T., Tani, J., Miyoshi, H., Morishita, A., Yoneyama, H., Kurokohchi, K., Inukai, Masugata, H., Goda, F., Senda, S., et al., 2013. Investigation of the factors associated with circulating soluble CD36 levels in patients with HCV-related chronic liver disease. Diabetol. Metab. Syndr. 5 (1), 51.

Filmus, J., Capurro, M., 2013. Glypican-3: a marker and a therapeutic target in hepatocellular carcinoma. FEBS J. 280 (10), 2471–2476.

Shafizadeh, N., Ferrell, L., Kakar, S., 2008. Utility and limitations of glypican-3 expression for the diagnosis of hepatocellular carcinoma at both ends of the differentiation spectrum. Mod. Pathol. 21 (8), 1011–1018.

Febbraio, M., Guy, E., Coburn, C., Knapp Jr., F.F., Beets, A.L., Abumrad, N.A., lverstein, R.L., 2002. The impact of overexpression and deficiency of fatty acid translocase (FAT)/CD36. Mol. Cell. Biochem. 239 (1–2), 193–197.

Anatelli, F., Chuang, S.T., Yang, X.J., Wang, H.L., 2008. Value of glypican 3 immunostaining in the diagnosis of hepatocellular carcinoma on needle biopsy. Am. J. Clin. Pathol. 130 (2), 219–223.

Gao, W., Ho, M., 2011. The role of glypican-3 in regulating Wnt in hepatocellular carcinomas. Cancer Rep. 1 (1), 14–19.

Yu, J., Ma, Q., Zhang, B., Ma, R., Xu, X., Li, M., Xu,W., Li, M., 2013. Clinical application of specific antibody against glypican-3 for hepatocellular carcinoma diagnosis. Sci. China Life. Sci. 56 (3), 234–239.

Downloads

Published

2021-07-01
CITATION
DOI: 10.52229/pbmj.v4i2.72
Published: 2021-07-01

How to Cite

Jaffari, H. A. ., & Mazhar, S. . (2021). Virus induced hepatocellular carcinoma (HCC) and protein biomarkers: Virus induced hepatocellular carcinoma (HCC) and protein biomarkers. Pakistan BioMedical Journal, 4(2), 7–13. https://doi.org/10.52229/pbmj.v4i2.72

Issue

Section

Review Article

Plaudit