Identification of Novel Alterations in the ASXL1 Gene and Its Expression Profile in CML Patients

Novel Alterations in the ASXL1 Gene and Its Expression Profile in CML Patients

Authors

  • Rabia Talat Mehmood Department of Zoology, University of Education, Lahore, Pakistan
  • Khuram Shehzad Khan Department of Zoology, University of Education, Lahore, Pakistan
  • Afia Muhammad Akram Department of Zoology, University of Education, Lahore, Pakistan
  • Sikandar Hayat Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
  • Amjad Zafar Department of Oncology, Jinnah Hospital, Lahore, Pakistan

DOI:

https://doi.org/10.54393/pbmj.v8i12.1334

Keywords:

Philadelphia Chromosomes, Tyrosine Kinase Inhibitors, Additional Sex Combs Like 1 (ASXL1) Gene , Hematopoietic Stem Cell

Abstract

Chronic myeloid leukemia is a hematopoietic stem cell malignancy characterized by excessive proliferation of white blood cells, primarily driven by the Philadelphia chromosome (t 9;22). Despite the availability of tyrosine kinase inhibitors, disease progression and therapy resistance remain major challenges, often linked to additional somatic mutations. Objectives: To find out the mutational status and expression variations of the ASXL1 gene hotspot region in CML patients treated by TKIs. Methods: This retrospective cross-sectional study was conducted at the Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan. DNA and mRNA of 50 CML patients were analyzed alongside 10 healthy controls and statistically assessed using SPSS. Results: Results showed that sequence analysis of exon 13 identified hotspot mutations, including two novel missense alterations, G659S and D667E, within the coding region of ASXL1. In-silico analysis also suggested potential structural and functional relevance of these variants. The ASXL1 gene expression showed a progressive but statistically non-significant down-regulation in CML patients across disease phases (p=0.662), disease duration (p=0.42), treatment with second-line versus first-line TKIs (p=0.412), and wild-type and mutant (p=0.544). Conclusions:  It is concluded that two novel missense alterations, G6559S and D667E, were identified in the hotspot region, and ASXL1 gene expression was downregulated non-significantly in CML patients.

References

Bahashwan SM. Chronic Myeloid Leukemia with a Rare Philadelphia Chromosome Variant Involving Chromosome 16. The American Journal of Case Reports. 2024 Aug; 25: e944641-1. doi: 10.12659/AJCR.944641. DOI: https://doi.org/10.12659/AJCR.944641

Chaudhary P, Chaudhary S, Patel F, Patel S, Patel D, Patel L et al. Significance of Somatic Mutation Profiling in CML Beyond BCR-ABL: A Retrospective Study of The Indian Population. Indian Journal of Hematology and Blood Transfusion. 2025 Jan; 41(1): 10-22. doi: 10.1007/s12288-024-01808-9. DOI: https://doi.org/10.1007/s12288-024-01808-9

Allegra A, Mirabile G, Caserta S, Stagno F, Russo S, Pioggia G et al. Oxidative Stress and Chronic Myeloid Leukemia: A Balance Between ROS-Mediated Pro-and Anti-Apoptotic Effects of Tyrosine Kinase Inhibitors. Antioxidants. 2024 Apr; 13(4): 461. doi: 10.3390/antiox13040461. DOI: https://doi.org/10.3390/antiox13040461

El-Tanani M, Nsairat H, Matalka II, Lee YF, Rizzo M, Aljabali AA et al. The Impact of the BCR-ABL Oncogene in The Pathology and Treatment of Chronic Myeloid Leukemia. Pathology-Research and Practice. 2024 Feb; 254: 155161. doi: 10.1016/j.prp.2024.155161. DOI: https://doi.org/10.1016/j.prp.2024.155161

Al-Bayati A, Al-Bayti A, Husain V. A Short Review About Chronic Myeloid Leukemia. Journal of Life and Bio Sciences Research. 2023 Jan; 4(01): 15-9. doi: 10.38094/jlbsr40172. DOI: https://doi.org/10.38094/jlbsr40172

Elshazly AM, Xu J, Melhem N, Abdulnaby A, Elzahed AA, Saleh T et al. Is Autophagy Targeting a Valid Adjuvant Strategy in Conjunction with Tyrosine Kinase Inhibitors? Cancers. 2024 Aug; 16(17): 2989. doi: 10.3390/cancers16172989. DOI: https://doi.org/10.3390/cancers16172989

Canet J, Cony‐Makhoul P, Orazio S, Cornet E, Troussard X, Maynadié M et al. Second‐Or Third‐Generation Tyrosine Kinase Inhibitors in First‐Line Treatment of Chronic Myeloid Leukemia in General Population: Is There A Real Benefit? Cancer Medicine. 2021 Oct; 10(20): 6959-70. doi: 10.1002/cam4.4186. DOI: https://doi.org/10.1002/cam4.4186

Yang FC and Agosto-Peña J. Epigenetic Regulation by Asxl1 in Myeloid Malignancies. International Journal of Hematology. 2023 Jun; 117(6): 791-806. doi: 10.1007/s12185-023-03586-y. DOI: https://doi.org/10.1007/s12185-023-03586-y

Gao X, You X, Droin N, Banaszak LG, Churpek J, Padron E et al. Role of ASXL1 in Hematopoiesis and Myeloid Diseases. Experimental Hematology. 2022 Nov; 115: 14-9. doi: 10.1016/j.exphem.2022.09.003. DOI: https://doi.org/10.1016/j.exphem.2022.09.003

Biswas MD. Pediatric Hematopathology: Bone Marrow Disorders, Leukemias, Lymphomas, and Molecular Diagnostics. Birupaksha, Pediatric Hematopathology: Bone Marrow Disorders, Leukemias, Lymphomas, and Molecular Diagnostics (September 29, 2025). Biswas, B. 2025. doi: 10.70593/978-93-7185- 091-9. DOI: https://doi.org/10.70593/978-93-7185-091-9

Ochi Y. Genetic Landscape of Chronic Myeloid Leukemia. International Journal of Hematology. 2023 Jan; 117(1): 30-6. doi: 10.1007/s12185-022-03510-w. DOI: https://doi.org/10.1007/s12185-022-03510-w

Kausar MA, Anwar S, Khan YS, Saleh AA, Ahmed MA, Kaur S et al. Autophagy and Cancer: Insights into Molecular Mechanisms and Therapeutic Approaches for Chronic Myeloid Leukemia. Biomolecules. 2025 Feb; 15(2): 215. doi: 10.3390/biom15020215. DOI: https://doi.org/10.3390/biom15020215

Bozkurt Bulakcı B, Daglar Aday A, Gurtekin B, Yavuz AS, Ozturk S, Cefle K et al. OCT-1 Expression in Patients with Chronic Myeloid Leukemia: A Comparative Analysis with Respect to Response to Imatinib Treatment. Indian Journal of Hematology and Blood Transfusion. 2022 Oct; 38(4): 668-74. doi: 10.1007/s12288-022-01532-2. DOI: https://doi.org/10.1007/s12288-022-01532-2

Livak KJ and Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2− ΔΔCT Method. Methods. 2001 Dec; 25(4): 402-8. doi: 10.1006/meth.2001.1262. DOI: https://doi.org/10.1006/meth.2001.1262

Jabbour E and Kantarjian H. Chronic Myeloid Leukemia: A Review. Journal of the American Medical Association. 2025 May 13. doi: 10.1001/jama.2025.0220. DOI: https://doi.org/10.1001/jama.2025.0220

Quintero-Rivera F, Aslam S, Yang L, Tso J, Lyon M, Dang K et al. An Undiagnosed Chronic Myeloid Leukemia (CML) with P190 BCR: ABL1 Transcript, an Extra Philadelphia Chromosome, and IKARO. Cancer Genetics. 2024 Aug; 286: S21-2. doi: 10.51253/pafmj.v74i2.7036. DOI: https://doi.org/10.1016/j.cancergen.2024.08.069

Kim T, Tyndel MS, Kim HJ, Ahn JS, Choi SH, Park HJ et al. Spectrum of Somatic Mutation Dynamics in Chronic Myeloid Leukemia Following Tyrosine Kinase Inhibitor Therapy. Blood, The Journal of the American Society of Hematology. 2017 Jan; 129(1): 38-47. doi: 10.1182/blood-2016-04-708560. DOI: https://doi.org/10.1182/blood-2016-04-708560

Bamusa SA, Qureshi W, Gohar A, Irfan M, Khan IA, Shakeel M. Genetic Profile of ASXL1 Gene in Risk Assessment in Acute Myeloid Leukemia. Bio Medical Center Genomic Data. 2025 Jul; 26(1): 49. doi: 10.1186/s12863-025-01324-3. DOI: https://doi.org/10.1186/s12863-025-01324-3

Mousa NO, Gado M, Assem MM, Dawood KM, Osman A. Expression Profiling of Some Acute Myeloid Leukemia-Associated Markers to Assess their Diagnostic/Prognostic Potential. Genetics and Molecular Biology. 2021 Jan; 44(1): E20190268. doi: 10.1590/1678-4685-GMB-2019-0268. DOI: https://doi.org/10.1590/1678-4685-gmb-2019-0268

Burgess AE, Kleffmann T, Mace PD. Oncogenic Truncations of ASXL1 Enhance a Motif for BRD4 ET-Domain Binding. Journal of Molecular Biology. 2021 Nov; 433(22): 167242. doi: 10.1016/j.jmb.2021.167242. DOI: https://doi.org/10.1016/j.jmb.2021.167242

Aggarwal V, Tuli HS, Varol M, Tuorkey M, Sak K, Parashar NC et al. NOTCH Signaling: Journey of an Evolutionarily Conserved Pathway in Driving Tumor Progression and Its Modulation as a Therapeutic Target. Critical Reviews in Oncology/Hematology. 2021 Aug; 164: 103403. doi: 10.1016/j.critrevonc.2021.103403. DOI: https://doi.org/10.1016/j.critrevonc.2021.103403

Keita Y, Goyama S, Asada S, Fujino T, Fukuyama T, Tanaka et al. Mutant ASXL1 Disrupts Paraspeckle Formation Through Aberrant Interaction with Nono in Hematopoietic Cells. Blood. 2019 Nov; 134: 2514. doi: 10.1182/blood-2019-125472. DOI: https://doi.org/10.1182/blood-2019-125472

Dey A, Seshasayee D, Noubade R, French DM, Liu J, Chaurushiya MS et al. Loss of the Tumor Suppressor BAP1 Causes Myeloid Transformation. Science. 2012 Sep; 337(6101): 1541-6. doi: 10.1126/science.1221711. DOI: https://doi.org/10.1126/science.1221711

Binder M, Carr RM, Lasho TL, Finke CM, Mangaonkar AA, Pin CL et al. Oncogenic Gene Expression and Epigenetic Remodeling of Cis-Regulatory Elements in ASXL1-Mutant Chronic Myelomonocytic Leukemia. Nature Communications. 2022 Mar; 13(1): 1434. doi: 10.1038/s41467-022-29142-6. DOI: https://doi.org/10.1038/s41467-022-29142-6

Specchia G, Pregno P, Breccia M, Castagnetti F, Monagheddu C, Bonifacio M et al. Prognostic Factors for Overall Survival in Chronic Myeloid Leukemia Patients: A Multicentric Cohort Study by the Italian CML GIMEMA Network. Frontiers in Oncology. 2021 Aug; 11: 739171. doi: 10.3389/fonc.2021.739171. DOI: https://doi.org/10.3389/fonc.2021.739171

Downloads

Published

2025-12-31
CITATION
DOI: 10.54393/pbmj.v8i12.1334
Published: 2025-12-31

How to Cite

Mehmood, R. T., Khan, K. S., Akram, A. M., Hayat, S., & Zafar, A. (2025). Identification of Novel Alterations in the ASXL1 Gene and Its Expression Profile in CML Patients: Novel Alterations in the ASXL1 Gene and Its Expression Profile in CML Patients. Pakistan BioMedical Journal, 8(12), 40–46. https://doi.org/10.54393/pbmj.v8i12.1334

Issue

Section

Original Article

Plaudit