



## Attention Deficit Hyperactivity Disorder Genetics and Future Perspectives

OPEN ACCESS

**Amara Shaukat<sup>1</sup>**<sup>1</sup>Avenida Universidad S/N Centro de Ciencias Genomicas, Cuernavaca, Morelos, Mexico[ashaukat@ccg.unam.mx](mailto:ashaukat@ccg.unam.mx)

---

**ARTICLE INFO****How to Cite:**

Shaukat, A. (2025). Attention Deficit Hyperactivity Disorder Genetics and Future Perspectives: ADHD Genetics and Future Perspectives. *Pakistan BioMedical Journal*, 8(12), 01-02. <https://doi.org/10.54393/pbmj.v8i12.1324>

Attention Deficit Hyperactivity Disorder (ADHD) is a common neurodevelopmental condition defined by persistent patterns of inattention, hyperactivity, and impulsivity that impair functioning across multiple settings [1]. Symptoms typically emerge in childhood and frequently persist into adulthood, although their expression may change over time. ADHD is clinically heterogeneous, with substantial variability in symptom severity, cognitive profiles, and comorbidity patterns [2]. Global prevalence estimates suggest that approximately five percent of children are affected, with lower rates observed in adults largely reflecting partial symptom remission rather than resolution [3].

The diagnosis of ADHD is based on behavioral criteria and includes three clinical presentations: predominantly inattentive, predominantly hyperactive impulsive, and combined [1]. ADHD commonly co-occurs with anxiety disorders, depression, learning disabilities, and autism spectrum disorder, contributing to diagnostic complexity and increased clinical burden [2]. These overlaps suggest shared biological mechanisms rather than discrete disease boundaries.

Neurobiological studies have consistently implicated fronto striatal and fronto cerebellar circuits involved in executive control, attention regulation, and inhibitory processes [4]. Structural and functional neuroimaging studies report delayed cortical maturation, altered cortical thickness, and differences in large scale brain connectivity, particularly in prefrontal regions [5]. At the neurochemical level, dysregulation of dopamine and norepinephrine signaling plays a central role in ADHD pathophysiology and provides the mechanistic basis for stimulant medications, which remain first line treatment [6].

Genetic factors represent one of the strongest contributors to ADHD risk. Family and twin studies consistently report heritability estimates between seventy and eighty percent, placing ADHD among the most heritable psychiatric disorders [7]. However, ADHD does not follow a single gene or Mendelian inheritance pattern. Instead, it reflects the cumulative effects of many common genetic variants of small effect, consistent with a highly polygenic architecture [8].

Early candidate gene studies focused on dopaminergic pathway genes such as DRD4, DRD5, SLC6A3, and COMT, but these explained only a small fraction of genetic risk. The field advanced substantially with large genome wide association studies. The first genome wide significant ADHD loci were identified by Demontis and colleagues, implicating genes involved in neurodevelopment, synaptic organization, and transcriptional regulation [9]. Subsequent work demonstrated substantial genetic overlap between ADHD and other neuropsychiatric and behavioral traits, including autism spectrum disorder, schizophrenia, educational attainment, and risk-taking behaviors, supporting shared biological pathways across conditions [10,11].

Rare genetic variants, including copy number variations affecting neurodevelopmental genes, also contribute to ADHD risk, particularly in individuals with more severe or persistent symptoms [9]. Environmental exposures such as prenatal smoking,

low birth weight, and early life psychosocial adversity interact with genetic susceptibility, influencing symptom expression rather than acting as primary causes.

Future ADHD research is increasingly oriented toward integrative and precision-based approaches. Polygenic risk scores summarizing genome wide genetic liability are being developed, although their predictive value at the individual level remains limited [7]. Combining genomic data with neuroimaging, cognitive phenotyping, and environmental measures may enable biologically informed stratification of ADHD, addressing long standing heterogeneity in diagnosis and treatment response.

Precision medicine represents a key future goal. Pharmacogenomic research seeks to identify genetic predictors of medication response and adverse effects, potentially improving treatment selection and tolerability [12]. Additionally, there is growing recognition of the need for ancestry diverse and lifespan focused research. Most genetic studies to date have focused on populations of European ancestry, limiting generalizability. Expanding global representation and longitudinal study designs will be essential for equitable translation of genetic discoveries into clinical practice.

In summary, ADHD is a complex neurodevelopmental disorder with a strong genetic foundation and substantial biological overlap with other psychiatric traits. Continued integration of genomics, neuroscience, and clinical research is likely to reshape ADHD classification and management, moving toward more precise and individualized care.

## REFERENCES

- [1] Nemeroff CB, Schatzberg AF, Rasgon N, Strakowski SM, editors. The American Psychiatric Association Publishing Textbook of Mood Disorders. American Psychiatric Pub; 2022 Jun. doi:10.1176/appi.books.9781615379620.
- [2] Faraone SV, Asherson P, Banaschewski T, et al. Attention Deficit Hyperactivity Disorder. *Nature Reviews Disease Primers*. 2015. doi:10.1038/Nrdp.2015.20.
- [3] Polanczyk GV, Willcutt EG, Salum GA, Kieling C, Rohde LA. ADHD Prevalence Estimates across Three Decades: An Updated Systematic Review and Meta Regression Analysis. *International Journal of Epidemiology*. 2014; 43(2): 434–442. doi:10.1093/ije/dyt261.
- [4] Castellanos FX and Proal E. Large Scale Brain Systems in ADHD: Beyond the Prefrontal Striatal Model. *Trends in Cognitive Sciences*. 2012; 16(1): 17–26. doi:10.1016/J.Tics.2011.11.007.
- [5] Cortese S, Aoki YY, Itahashi T, Castellanos FX, Eickhoff SB. Systematic Review and Meta Analysis of Resting State Functional MRI Studies in ADHD. *Neuroscience & Biobehavioral Reviews*. 2021; 128: 314–328. doi:10.1016/J.Neubiorev.2021.06.015.
- [6] Arnsten AFT. The Emerging Neurobiology Of ADHD: The Key Role of the Prefrontal Association Cortex. *Journal of Pediatrics*. 2009; 154(5): I–S43. doi:10.1016/J.Jpeds.2009.01.018.
- [7] Faraone SV and Larsson H. Genetics of Attention Deficit Hyperactivity Disorder. *Molecular Psychiatry*. 2019; 24: 562–575. doi:10.1038/s41380-018-0070-0.
- [8] Thapar, Anita, Miriam Cooper, Rachel Jefferies, Evangelia Stergiakouli. What causes Attention Deficit Hyperactivity Disorder? *Archives Of Disease in Childhood*. 2012; 97(3): 260–265. doi:10.1136/archdischild-2011-300482
- [9] Demontis D, Walters RK, Martin J. Discovery of The First Genome Wide Significant Risk Loci for ADHD. *Nature Genetics*. 2019; 51: 63–75. doi:10.1038/s41588-018-0269-7.
- [10] Ribasés, M., M. Mitjans, Catharina A. Hartman, M. Soler Artigas, Ditte Demontis, Henrik Larsson et al. Genetic Architecture of ADHD and Overlap with Other Psychiatric Disorders and Cognition-Related Phenotypes. *Neuroscience & Biobehavioral Reviews*. 2023; 153: 105313. doi:10.1016/j.neubiorev.2023.105313.
- [11] Stergiakouli E, Martin J, Hamshere ML. Shared Genetic Influences between ADHD and Autistic Traits in the General Population. *The American Journal of Psychiatry*. 2017; 174(1): 47–54.
- [12] Weinshilboum, Richard M., and Liewei Wang. Pharmacogenomics: Precision Medicine and Drug Response in Mayo Clinic Proceedings. Elsevier. 2017; 92(11): 1711–1722. doi:10.1016/j.mayocp.2017.09.001.